News

  • 0
  • 0

What are lithium battery anode materials

If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net



Anodes for lithium batteries Materials that store and release Lithium ions are an essential part of the lithium battery. The anode material is responsible for the acceptance of lithium ions during the charging process from the positive battery electrode and the release of lithium ions back to the positive battery electrode during discharging. The anode material chosen directly impacts the cost, performance and safety of lithium batteries.

The characteristics of anode material for lithium batteries

Reversible capability: Reversible capacities refers the amount of lithium that the battery is able to store and release when charging and discharging. The higher the capacity of the reversible battery, the higher its energy density, and the more power it can store and release.

Lithium ion diffusivity coefficient: The diffusion coefficient of lithium ion in anode materials indicates the difficulty with which lithium ions diffuse. The higher the diffusion coefficient the easier it is to move lithium ions and the better electrochemical performance the battery.

Electrochemical Stability. Electrochemical stability is the ability of anode materials to stabilize their structure and reactivity while the battery is being charged and discharged. When the electrochemical performance of the anode is poor, battery life will be shortened and safety concerns may arise.

Cost: Considering the commercial application, the price of anode materials is also an important factor to be considered.Currently, lithium battery anode materials on the market mainly include graphite-based materials,

Lithium titanate and tin-based material are both good options. One of them is graphite-based material, which has high reversible capacities and good stability electrochemically, but costs a lot. Although lithium titanate has good electrochemical properties and is inexpensive, its reversible ability is limited. Tin-based material has a high capacity for reversible use and is low in cost. However, their electrochemical stabilty is poor. Different anode material is suitable for various applications and battery systems. It must be chosen and used according the actual needs.

Research and development in battery materials is important because of their important role in lithium batteries. With the continued progress of technology, and the growing application demand, research and development for new anode material will become more active in the future. At the moment, the main negative electrode materials are transition metal nitride (TMN), transition metal carbide (TMC), alloy-like material, carbon nanotubes, two-dimensional materials. These new materials will lead to the development of future lithium batteries anode materials due to their higher reversible capacities, improved electrochemical stability, and lower cost.

Use of lithium anode materials

Applications of anode material are wide-ranging, and include a number of fields requiring portable power sources such as electronic devices, electric vehicles, energy storage systems, and so on. Following are some specific examples of application:

Electronic products, such as mobile phones, tablet PCs and laptops. Power is provided by lithium batteries. The anode material used directly affects energy density and charging speed as well as the life, safety, and longevity of the batteries in these areas.

Electric Vehicles: Since electric vehicles require large amounts of electricity for the vehicle to operate, they must use batteries with a high energy density and high capacity. Electric vehicles' performance and safety are affected by the choice of anode.

Electricity Storage Systems. These include home energy systems, wind power storage systems and more. These systems are required to produce a large amount power during periods of peak demand, which is why they need large-capacity batteries with high energy-density. The anode material used directly impacts the performance and price of these systems.

What are the different types of anode materials used in lithium batteries?

A new type of lithium batteries, silicon-carbon batteries have anodes that are primarily silicon-based. The advantages of silicon-based material include high reversible capacitance, high stability electrochemically, and low cost. This makes them a popular choice for battery use. There are three main types of silicon materials used as anodes in silicon-carbon battery:

Silicon-carbon materials: Silicon-carbon materials are composite materials combining silicon and carbon materials. This material offers high reversible capacitance, high electrochemical stabilities and long lives, and can be better matched to the anode for improved battery performance. Silicon content in silicon carbon composites is adjustable to meet the needs of different applications.

Silicon oxide material. Silicon oxide material has excellent electrochemical performance. It is also a type of negative electrode with a high capacity for reversibility, resulting in cyclable life that lasts incredibly long and good safety. The main drawback of this material, however, is the low efficiency in first charging and discharging. To improve performance it is necessary to use pre-lithiation techniques and other technologies.

Silicon nitride Material: silicon nitride, a new material for negative electrodes that combines both the advantages of nitride and silicon materials. This material has a high reversible capacitance, high electrochemical stability, and good electrical conductivity. Therefore, it is well suited for batteries.

Here are some examples of the many types of anode material that are available.

Carbon nanotubes. These nanotubes have many advantages, including high specific surface areas, electrical conductivity and chemical stability. Carbon nanotubes have a wide range of applications, including as anode material in lithium-ion cells with high reversible capacitance, stable charging/discharging, and long life.

Graphene : Graphene can be used as anode material in lithium-ion batteries with high reversible capacity, stable charge/discharge and long life. Graphene has the potential to be used in lithium-ion cells with high reversible energy, stable charge/discharge rates, and long lifespan.

Alloy materials. Alloys are a type of new anode materials with high reversible capacitance, stable charging/discharging and a long lifespan. The disadvantage of alloys is their high cost and difficult preparation.

Metal oxide material: Metal oxide is a new type anode material. It has many advantages, including high reversible capacitance, stability of charge/discharge over time, good performance in terms of multiplicity and low temperature. The disadvantages of using metal oxide materials include higher preparation costs and poorer conductivity.

The following materials can be used as anodes for batteries:

Tin-based Materials: Tin-based materials are a common anode material with advantages such as high reversible capacities, good electrochemical stabilities and low costs. The disadvantages of using tin-based material are a reduced cycle life and the easy formation of dendrites. These factors reduce battery safety.

Oxygenate materials: Oxygenate materials are a new type anode with advantages such as high reversible capacities, stable charging and discharge, long life, and low costs. The oxygenate material's disadvantage is its poor kinetic performance for electrochemical reactions. This needs to improve.

Transition metal-nitride materials: transition metal-nitride is a new material for negative electrodes. It has the advantage of high reversible capacities, stable charging, discharging and long life. Also, it performs better in electrochemical reactions. The preparation costs of transition metal material nitride are high and need to be further reduced.

Alloy materials are also used widely in the field negative electrode materials. These include Si-C Composites, SnC Composites, etc. These materials offer a higher reversible capacitance and better charge/discharge stabilities, but their cost is high and they need to be further reduced.

The research, development, and application of battery anode material is important for improving the performance of batteries, reducing their cost, and ensuring their safety. New battery anode material application will become more diverse with the continued progress of science, technology and application demand.

Lithium Battery Electrode Material SupplierHigh-purity ultrafine titanium dioxide is available from us. __S.66__ Such as graphite or graphene. Click on the product of your choice to send us an inquiry.

Inquiry us

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

High Purity Molybdenum Boride MoB2 Powder CAS 12006-99-4, 99%

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

Metal Alloy 18g/cm3 High Density Tungsten Alloy Ball

High Purity 3D Printing Nickel Alloy IN718 Powder

High Purity 3D Printing Alloy CoCrW Powder

High Purity Chromium Diboride CrB2 Powder CAS 12007-16-8, 99%

High Purity Nano Ag Silver powder cas 7440-22-4, 99%

High Purity Calcium Nitride Ca3N2 Powder CAS 12013-82-0, 99.5%

High Purity Nano Hafnium Hf powder CAS 7440-58-6, 99%

High Purity Titanium Sulfide TiS2 Powder CAS 2039-13-3, 99.99%

High Purity Tungsten Silicide WSi2 Powder CAS 12039-88-2, 99%

High Purity 3D Printing Powder 15-5 Stainless Steel Powder

High Purity Zirconium Nitride ZrN Powder CAS 25658-42-8, 99.5%

High Purity Silicon Sulfide SiS2 Powder CAS 13759-10-9, 99.99%

High Purity Colloidal Silver Nano Silver Solution CAS 7440-22-4

Supply Magnesium Granules Mg Granules 99.95%

High Purity 3D Printing 304 Stainless Steel Powder

Our Latest Products

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

TRUNNANO is a reliable supplier for high purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%.…

High Purity Molybdenum Boride MoB2 Powder CAS 12006-99-4, 99%

TRUNNANO is a reliable supplier for high purity Molybdenum Boride MoB2 Powder CAS 12006-99-4, 99%.…

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

TRUNNANO is a reliable supplier of Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate.…