Trending

News

  • 0
  • 0

What is the history of lithium batteries?

If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net



Guotai Junan released a research report saying that under the background of carbon neutrality, the scarcity of coal mines is prominent, and the value of assets will continue to increase. The high point of capital expenditure in the coal industry appeared in 2012. Under the general direction of carbon neutrality, the overall investment in the industry has slowed down, and capital expenditure has gradually declined. From 2021 to now, the Energy Bureau of the National Development and Reform Commission has only newly approved 17.4 million tons of Lithium Batteries.

Early R&D of Lithium Batteries

Lithium batteries were first used in pacemakers. Lithium-ion batteries have the advantages of extremely low self-discharge rate and flat discharge voltage, so that the pacemaker implanted in the human body can operate for a long time without recharging. Lithium batteries generally have a nominal voltage higher than 3.0 volts and are more suitable for integrated circuit power supplies. Manganese dioxide batteries are widely used in calculators, digital cameras, and watches.

In order to develop varieties with better performance, various materials have been researched, resulting in unprecedented products.

In 1992, Sony successfully developed lithium-ion batteries. Its practical application greatly reduces the weight and volume of portable electronic devices such as mobile phones, notebooks, and calculators.

What is the development process of lithium batteries?

In 1970, M.S. Whittingham of Exxon used titanium sulfide as the positive electrode material and metal lithium as the negative electrode material to make the first lithium battery.

In 1980, J. Goodenough discovered that lithium cobalt oxide can be used as a cathode material for lithium-ion batteries.

In 1982, R.R. Agarwal and J.R. Selman of the Illinois Institute of Technology discovered that lithium ions have the property of intercalating graphite, a process that is fast and reversible. At the same time, the safety hazards of lithium batteries made of metal lithium have attracted much attention. Therefore, people have tried to use the characteristics of lithium ions embedded in graphite to make rechargeable batteries. The first usable lithium-ion graphite electrode was successfully trial-produced at Bell Laboratories.

In 1983, M. Thackeray, J. Goodenough and others found that manganese spinel is an excellent cathode material with low price, stability and excellent conductivity and lithium conductivity. Its decomposition temperature is high, and its oxidizing property is much lower than that of lithium cobalt oxide. Even if there is a short circuit or overcharge, it can avoid the danger of burning and explosion.

In 1989, A.Manthiram and J.Goodenough found that a positive electrode with a polymeric anion would produce a higher voltage.

In 1991, Sony Corporation released the first commercial lithium-ion battery. Subsequently, lithium-ion batteries revolutionized the face of consumer electronics.

1650339084563383.jpg

In 1996, Padhi and Goodenough found that phosphates with an olivine structure, such as lithium iron phosphate (LiFePO4), are more superior than traditional cathode materials, so they have become the current mainstream cathode materials.

With the widespread use of digital products such as mobile phones and notebook computers, lithium-ion batteries are widely used in such products with excellent performance, and are gradually developing into other product application fields.

In 1998, Tianjin Power Research Institute began commercial production of lithium-ion batteries.

On July 15, 2018, it was learned from Keda Coal Chemistry Research Institute that a special carbon anode material for high-capacity and high-density lithium batteries with pure carbon as the main component came out in the institute. The cruising range of the car can exceed 600 kilometers.

In October 2018, the research group of Professor Liang Jiajie and Chen Yongsheng of Nankai University and the research group of Lai Chao of Jiangsu Normal University successfully prepared a silver nanowire-graphene three-dimensional porous carrier with a multi-level structure, and supported metal lithium as a composite anode material. This carrier can inhibit the formation of lithium dendrites, thereby enabling ultra-high-speed charging of batteries, which is expected to significantly extend the "lifetime" of lithium batteries.

High quality lithium batteries supplier

Luoyang Moon & Star New Energy Technology Co., LTD, founded on October 17, 2008, is a high-tech enterprise committed to the research and development, production, processing, sales and technical services of lithium ion battery anode materials. After more than 10 years of development, the company has gradually developed into a diversified product structure with natural graphite, artificial graphite, composite graphite, intermediate phase and other negative materials (silicon carbon materials, etc.). The products are widely used in high-end lithium ion digital, power and energy storage batteries.If you are looking for Lithium battery anode material,click on the needed products and send us an inquiry:sales@graphite-corp.com

 


Gas supplies have been in short supply because of the conflict between Russia and Ukraine.  Combined with the situation that other renewable sources cannot produce enough electricity, electricity prices have soared in many parts all over the world. For this reason, I assume the supply and prices of the Lithium Batteries would keep being influenced by the high energy prices.

Inquiry us

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

High Purity Molybdenum Boride MoB2 Powder CAS 12006-99-4, 99%

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

Metal Alloy 18g/cm3 High Density Tungsten Alloy Ball

High Purity 3D Printing Nickel Alloy IN718 Powder

High Purity 3D Printing Alloy CoCrW Powder

High Purity Chromium Diboride CrB2 Powder CAS 12007-16-8, 99%

High Purity Nano Ag Silver powder cas 7440-22-4, 99%

High Purity Calcium Nitride Ca3N2 Powder CAS 12013-82-0, 99.5%

High Purity Nano Hafnium Hf powder CAS 7440-58-6, 99%

High Purity Titanium Sulfide TiS2 Powder CAS 2039-13-3, 99.99%

High Purity Tungsten Silicide WSi2 Powder CAS 12039-88-2, 99%

High Purity 3D Printing Powder 15-5 Stainless Steel Powder

High Purity Zirconium Nitride ZrN Powder CAS 25658-42-8, 99.5%

High Purity Silicon Sulfide SiS2 Powder CAS 13759-10-9, 99.99%

High Purity Colloidal Silver Nano Silver Solution CAS 7440-22-4

Supply Magnesium Granules Mg Granules 99.95%

High Purity 3D Printing 304 Stainless Steel Powder

Our Latest Products

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

TRUNNANO is a reliable supplier for high purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%.…

High Purity Molybdenum Boride MoB2 Powder CAS 12006-99-4, 99%

TRUNNANO is a reliable supplier for high purity Molybdenum Boride MoB2 Powder CAS 12006-99-4, 99%.…

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

TRUNNANO is a reliable supplier of Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate.…